If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-1287=0
a = 1; b = 1; c = -1287;
Δ = b2-4ac
Δ = 12-4·1·(-1287)
Δ = 5149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5149}}{2*1}=\frac{-1-\sqrt{5149}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5149}}{2*1}=\frac{-1+\sqrt{5149}}{2} $
| g/2+-24=-32 | | 2x-0,6=0,3-x | | 1/2(10x-8)=5x+8 | | 86=1.5+.9(x) | | 44=2a-14 | | 3(x+2=5x-7 | | 3x(4)=729 | | 20=3z+2z | | p-3=17 | | 2x+5=60=7x-5 | | 2b-20=240 | | 2n+9-8=-18 | | 2t-5+t2=5 | | 72-5w=3w | | 3-5x=4-3(x-1) | | 5(x-5)+6=30 | | 6p^2+41=31 | | 5(4x=2)=130 | | y−7=3. | | 7x9=(7x10)-(7x2) | | 13r+7=13 | | 2r+4/6=4r-1/4 | | 12x+8=4x-32 | | K-1=5x^2+3x-6 | | 0.466307658=6/x | | 3x/2+9=6x | | (2x+8)/2=x+4 | | A+1=4x+1 | | 13x-5=8x+30 | | -1=x2-2x+6 | | 2/7(x-9)=14 | | 5m+8=65 |